Modelo para visualizar y evaluar el conocimiento conceptual

Autores/as

  • Constanza Raquel Huapaya Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
  • Francisco Ángel José Lizarralde Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
  • Jorge Vivas Facultad de Psicología, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina

DOI:

https://doi.org/10.24215/18509959.0.p.%2014-24

Palabras clave:

red semántica, herramienta automática, evaluación basada en computadora, visualización

Resumen

Este artículo describe un sistema computacional de evaluación del estudiante basado en el método DistSem. El sistema de diagnóstico, Infosem, ha tomado como base el modelo de una red semántica. Los nodos de la red conforman los conceptos propuestos por el evaluador experto y los vínculos representan el grado de similitud que el estudiante atribuye a los dos conceptos que une cada vínculo. Uno de los aspectos relevantes del sistema es la interface visual la cual permite inspeccionar la red que representa el conocimiento conceptual. Se ha implementado una evaluación cualitativa y otra cuantitativa. La visualización permite al docente interpretar fácilmente la respuesta de un estudiante. Se han realizado numerosas experiencias con estudiantes universitarios.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

[1] Johnson-Laird P. Mental Models Toward a cognitive science of language, inference and language. Cambridge University Press. Cambridge 1983.
[2] Edwards-Leis, C. E. Mentals models of teaching, learning and assessment: a longitudinal study. Phd thesis. James Cook University. 2010
[3] Seel N.M. . Educational diagnosis of mental models: Assessment problems and technologybased solutions. Journal of Structural Learning and Intelligent Systems, 14(2), pp. 153–185.1999.
[4] Mislevy R.J., Behrens J.T. , Bennett R. E., Demark S. F., Frezzo D.C., Levy R.. On the roles of external knowledge representations in assessment design. National Center for Research on Evaluation, Standards, and Student Testing (CRESST). Graduate School of Education and Information Studies. University of California, Los Angeles. 2007.
[5] Seel N.M. Mental models, knowledge transfer, and teaching strategies. Journal of Structural Learning and Intelligent Systems, 12(3), pp. 197–213. 1995.
[6] Seel N.M., Essentials of Computer-Based Diagnostics of Learning and Cognition. En Computer_Based Diagnostics and Systematic Analysis of Knowledge. (Ifenthaler D. et al., Ed.), Springer. 2010.
[7] Bennettt R. E. Cognitively Based Assessment of, for, and as Learning (CBAL): A Preliminary Theory of Action for Summative and Formative Assessment. Measurement. 8, pp 70-91. 2010.
[8] Ifenthaler D., Pirnay_Dummer P. y Seel N. M. (Editores), Computer-Based Diagnostics and Systematic Analysis of Knowledge, Springer, 2010.
[9] Ellson J., Gansner E. R., Koutsofios E., North S. C., Graphviz and Dynagraph – Static and Dynamic Graph Drawing Tools. Jünger & Mutzel Eds. Graph drawing software. Springer Verlag. 2004.
[10] Ifenthaler, D. Toward automated computer-based visualization and assessment of team-based performance. Journal of Educational Psychology Special Section: Computer-Based Assessment of Cross-Curricular Skills and Processes, pp 651-665. 2014.
[11] Minović M., Milovanović M., Šošević U., Conde González M. A. Visualization of student learning model in serious games. Computers in Human Behavior. 2014
[12] Pirnay_Dummer P. y Ifenthaler D., Automated Knowledge Visualization and Assessment. En Computer-Based D Diagnostics and SystematicAnalysis of Knowledge, Springer, 2010.
[13]Butz, C.J., Hua, S. & Maguire, R.B.. A Web-based Bayesian Intelligent Tutoring System for Computer Programming, Web Intelligence and Agent Systems: An International Journal, 4(1), pp 77-97. 2006.
[14] Zapata-Rivera J. D., Greer J. E. Interacting with Inspectable Bayesian Student Models. International Journal of Artificial Intelligence in Education 14 , pp 1-37. 2004.
[15] Conati C., Gertner A. Vanlehn K. , Using bayesian networks to manage uncertainty in student modeling. Journal of User Modeling and UserAdapted Interaction. 12, pp 371-417. 2002.
[16] Novak, J. D. y A. J. Cañas, The Theory Underlying Concept Maps and How to Construct and Use Them, Technical Report IHMC CmapTools 2006-01 Rev 01-2008, Florida Institute for Human and Machine Cognition. 2008.
[17] Hoeft R. M., Jentsch F. G., Harper M. E., TPLKATS—concept map: a computerized knowledge assessment tool. Computers in Human Behavior 19 pp. 653–657. 2003.
[18] Anohina-Naumeca A. Determining the set of concept map based tasks for computerized knowledge self-assessment. Procedia - Social and Behavioral Sciences 69, pp. 143 – 152. 2012.
[19] McNamara, T. P. y Holbrook, J. B. Semantic Memory and Priming. NJ: John Wiley and Sons. 2003.
[20] Vivas, J. Método Distsem: procedimiento para la evaluación de distancias semánticas. Revista Perspectivas en Psicología, 1 (1), pp. 56-62. 2004
[21] Huapaya C.R. Lizarralde F.A., Vivas J., Arona G. Modelo de evaluación del conocimiento en un Sistema Tutorial Inteligente. Revista Iberoamericana de Tecnología en Educación y Educación en Tecnología., pp. 20-29. 2007.
[22] Ifenthaler, D. Relational, structural, and semantic analysis of graphical representations and concept maps. Educational Technology Research and Development. 2008.
[23] Hubert, L. J. y Schultz, J. Quadratic Assignment as a general data analysis strategy. British Journal of Mathematical and Statistical Psychology, 29, pp. 190-241. 1976.
[24] Krackhardt D. A caveat on the Use of the Quadratic Assignment Procedure. Journal of Quantitative Anthropology. 3: 279-296. 1992.
[25] Borgatti S.P. A Statistical Methods for Comparing Aggregate Data Across A Priori Groups. Fields Methods. 14, pp. 88-107.2002.
[26] Johnson, S. C. Hierarchical Clustering Schemes. Psychometrika, 2 pp. 241-254. 1967.

Descargas

Publicado

2015-06-01

Cómo citar

[1]
C. R. Huapaya, F. Ángel J. Lizarralde, y J. Vivas, «Modelo para visualizar y evaluar el conocimiento conceptual», TEyET, n.º 15, pp. p. 14–24, jun. 2015.

Número

Sección

Artículos originales