Funcionalidades Emergentes para Tutorias em Ambientes Virtuais de Aprendizagem
DOI:
https://doi.org/10.24215/18509959.38.e6Palabras clave:
Tutoria individualizada, Tecnologias emergentes, Ambientes Virtuais de AprendizagemResumen
A tutoria individualizada no ensino-aprendizagem, principalmente em larga escala, é uma demanda que requer profissionais qualificados e elevados custos para ser realizada. O objetivo deste estudo é analisar estratégias de prover possibilidades de funcionalidades emergentes de apoio às tutorias aos estudantes em Ambientes Virtuais de Aprendizagem (AVA). Para isto, foram empregadas análises SWOT, com o intuito de identificar os pontos de maior impacto no contexto de utilização de um ambiente virtual de rede social de educativa. Os resultados obtidos indicam que as plataformas tendem a oferecer experiências generalistas e pouco individualizadas. As implicações deste estudo apontam para a necessidade de propor um design de ambientes virtuais que permita oferta qualificada de tutorias personalizadas, diante das necessidades individuais, porém com valorização do interpessoal e o processo construtivo dos estudantes.
Descargas
Citas
B. S. Bloom, The 2 sigma problem: The search for methods of group instruction as effective as one-to-one tutoring. Educational researcher, v. 13, n. 6, p. 4-16, 1984. https://doi.org/10.3102/0013189X013006004
K. G. Srinivasa, M. Kurni, K. Saritha, Aproveitando o poder da IA para a educação. In: Métodos de aprendizagem, ensino e avaliação para aprendizes contemporâneos: pedagogia para a geração digital. Cingapura: Springer Nature Cingapura, 2022. p. 311-342. https://doi.org/10.1007/978-981-19-6734-4_13
A. K. Alhazmi et al. AI’s Role and Application in Education: Systematic Review. Intelligent Sustainable Systems: Selected Papers of WorldS4 2022, Volume 1, p. 1-14, 2023. https://doi.org/10.1007/978-981-19-7660-5_1
M. Zafari et al. Artificial intelligence applications in K-12 education: A systematic literature review. IEEE Access, 2022. https://doi.org/10.1109/ACCESS.2022.3179356
F. St-Hilaire et al. A New era: Intelligent tutoring systems will transform online learning for millions. arXiv preprint arXiv:2203.03724, 2022. https://doi.org/10.48550/arXiv.2203.03724
L. A. González et al. Improving learning experiences in software engineering capstone courses using artificial intelligence virtual assistants. Computer Applications in Engineering Education, v. 30, n. 5, p. 1370-1389, 2022. https://doi.org/10.1002/cae.22526
N. Humble, P. Mozelius, Artificial intelligence in education—A promise, a threat or a hype. In: Proceedings of the european conference on the impact of artificial intelligence and robotics. 2019. p. 149-156.
D. Teolis, T. Sanvictores,; J. An, “SWOT analysis”. 2019.
J. Girodon et al. An organizational approach to designing an intelligent knowledge-based system: Application to the decision-making process in design projects. Advanced engineering informatics, v. 29, n. 3, p. 696-713, 2015. https://doi.org/10.1016/j.aei.2015.07.001
A. Alam, Employing Adaptive Learning and Intelligent Tutoring Robots for Virtual Classrooms and Smart Campuses: Reforming Education in the Age of Artificial Intelligence. In: Advanced Computing and Intelligent Technologies: Proceedings of ICACIT 2022. Singapore: Springer Nature Singapore, 2022. p. 395-406. https://doi.org/10.1007/978-981-19-2980-9_32
B. C. Neves, Inteligência artificial e computação cognitiva em unidades de informação: conceitos e experiências. Logeion: filosofia da informação, v. 7, n. 1, p. 186-205, 2020. https://doi.org/10.21728/logeion.2020v7n1.p186-205
S. E. de F. Santos, E. M. de F. Jorge, I. Winkler, Inteligência artificial e virtualização em ambientes virtuais de ensino e aprendizagem: desafios e perspectivas tecnológicas. ETD Educação Temática Digital, v. 23, n. 1, p. 2-19, 2021. https://doi.org/10.20396/etd.v23i1.8656150
A. Rahman, P. Tomy, Voice Assistant as a Modern Contrivance to Acquire Oral Fluency: An Acoustical and Computational Analysis. World Journal of English Language, v. 13, n. 1, 2023. https://doi.org/10.5430/wjel.v13n1p92
X. Deng, Z. Yu, A Meta-Analysis and Systematic Review of the Effect of Chatbot Technology Use in Sustainable Education. Sustainability, v. 15, n. 4, p. 2940, 2023. https://doi.org/10.3390/su15042940
M. A. Kuhail et al. Interacting with educational chatbots: A systematic review. Education and Information Technologies, v. 28, n. 1, p. 973-1018, 2023. https://doi.org/10.1007/s10639-022-11177-3
A. Tlili et al. What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learning Environments, v. 10, n. 1, p. 15, 2023. https://doi.org/10.1186/s40561-023-00237-x
H. Chen, H. W. Park, C. Breazeal, Teaching and learning with children: Impact of reciprocal peer learning with a social robot on children’s learning and emotive engagement. Computers & Education, v. 150, p. 103836, 2020. https://doi.org/10.1016/j.compedu.2020.103836
D. Sachan, K. Saroha, A review of adaptive and intelligent online learning systems. ICT Analysis and Applications, p. 251-262, 2022. https://doi.org/10.1007/978-981-16-5655-2_24
A. Alam, Should robots replace teachers? Mobilisation of AI and learning analytics in education. In: 2021 International Conference on Advances in Computing, Communication, and Control (ICAC3). IEEE, 2021. p. 1-12. https://doi.org/10.1109/ICAC353642.2021.9697300
V. Echeverria, et al. Designing Hybrid Human-AI Orchestration Tools for Individual and Collaborative Activities: A Technology Probe Study. IEEE Transactions on Learning Technologies, 2023. https://doi.org/10.1109/TLT.2023.3248155
A. J. Pereira, A. S., Gomes, T. T. Primo, Especificação de Sistema de Recomendação Educacional de Incentivo as Interações em Plataforma Social de Aprendizagem. RENOTE, Porto Alegre, v. 20, n. 2, p. 1–10, 2023. https://doi.org/10.22456/1679-1916.129143
L. Mishra, T. Gupta, A. Shree, Online teaching-learning in higher education during lockdown period of COVID-19 pandemic. International Journal of Educational Research Open, v. 1, p. 100012, 2020. https://doi.org/10.1016/j.ijedro.2020.100012
H. Abdi, L. J. Williams, Principal component analysis. Wiley interdisciplinary reviews: computational statistics, v. 2, n. 4, p. 433-459, 2010. https://doi.org/10.1002/wics.101
J. H. Steiger, Tests for comparing elements of a correlation matrix. Psychological bulletin, v. 87, n. 2, p. 245, 1980. https://psycnet.apa.org/doi/10.1037/0033-2909.87.2.245
H. Liu et al. The Influence of Affective Feedback Adaptive Learning System on Learning Engagement and Self-Directed Learning. Frontiers in Psychology, v. 13, 2022. https://doi.org/10.3389/fpsyg.2022.858411
D. Panzoli et al. Levels of interaction (loi): a model for scaffolding learner engagement in an immersive environment. In: Intelligent Tutoring Systems: 10th International Conference, ITS 2010, Pittsburgh, PA, USA, June 14-18, 2010, Proceedings, Part II 10. Springer Berlin Heidelberg, 2010. p. 393-395. https://doi.org/10.1007/978-3-642-13437-1_81
I. Vuković et al. Multi-agent system observer: Intelligent support for engaged e-learning. Electronics, v. 10, n. 12, p. 1370, 2021. https://doi.org/10.3390/electronics10121370
D. Dermeval et al. GaTO: An ontological model to apply gamification in intelligent tutoring systems. Frontiers in Artificial Intelligence, v. 2, p. 13, 2019. https://doi.org/10.3389/frai.2019.00013
S. Larsson, F. Heintz, Transparency in artificial intelligence. Internet Policy Review, v. 9, n. 2, 2020. https://doi.org/10.14763/2020.2.1469
K. Fiok et al. Explainable artificial intelligence for education and training. The Journal of Defense Modeling and Simulation, v. 19, n. 2, p. 133-144, 2022. https://doi.org/10.1177/15485129211028651
L. A. Mayne, W. Qiang, Creating and measuring social presence in online graduate nursing courses. Nursing Education Perspectives (National League for Nursing). v. 2, n. 32, 2011. https://doi.org/10.5480/1536-5026-32.2.110
A. Pérez, A. F. Roa, N. M. Rosado, Flipgrid for Social Interaction and Collaborative Learning in a Virtual Learning Environment. In Technology-Enabled Innovations in Education: Select Proceedings of CIIE 2020 Singapore: Springer Nature Singapore. p. 459–470. 2022. https://doi.org/10.1007/978-981-19-3383-7_37
C. I. Maican et al., A study on academic staff personality and technology acceptance: The case of communication and collaboration applications. Computers & Education, n. 128, p. 113-131. 2019. https://doi.org/10.1016/j.compedu.2018.09.010
F. Martin, D. U. Bolliger, Engagement matters: Student perceptions on the importance of engagement strategies in the online learning environment. Online learning, n. 22, v. 1, p. 205-222, 2018. https://doi.org/10.24059/olj.v22i1.1092
D. Turnbull, R. Chugh, J. Luck, Learning Management Systems, An Overview. Encyclopedia of education and information technologies, p. 1052-1058, 2020. https://doi.org/10.1007/978-3-030-10576-1_248
L. Guo et al., Evolution and trends in intelligent tutoring systems research: a multidisciplinary and scientometric view. Asia Pacific Education Review, v. 22, n. 3, p. 441-461, 2021. https://doi.org/10.1007/s12564-021-09697-7
F. St-Hilaire, et al., A New era: Intelligent tutoring systems will transform online learning for millions. arXiv preprint arXiv:2203.03724, 2022. https://doi.org/10.48550/arXiv.2203.03724
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Aluisio José Pereira, Alex Sandro Gomes, Tiago Thompsen Primo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor y licencias
Los artículos aceptados para publicación tendrán la licencia de Creative Commons BY-NC. Los autores deben firmar un acuerdo de distribución no exclusiva después de la aceptación del artículo.