Laboratorios remotos en educación superior: Una revisión bibliográfica sistematizada

Autores/as

DOI:

https://doi.org/10.24215/18509959.35.e7

Palabras clave:

Laboratorio remoto, educación ingenieros, experimento real, actuadores, laboratorio educativo, educación en línea, tecnología educativa

Resumen

El uso de laboratorios teleoperados es una realidad en varias instituciones de educación superior. Son una alternativa frente a la imposibilidad física de asistir presencialmente y se ha extendido su uso en los últimos años. Existen pocos trabajos (dos) de reseñas que sistematizan las investigaciones al respecto, éstas abarcan un período temporal reducido. Se desarrolla un estudio del tipo revisión bibliográfica sistematizada [1], con la finalidad de estudiar las tendencias en el uso de laboratorios remotos para el aprendizaje en educación superior. Se logra analizar 53 trabajos encontrados en las bases de datos WOS y ERIC, publicados entre los años 2011 y 2021. Abarca trabajos de distintas localizaciones geográficas, en 6 continentes, los cuales corresponden en su mayoría a artículos publicados en revistas científicas y a ponencias en congresos, el principal enfoque metodológico de los estudios es de tipo cuantitativo. Los principales temas abordados en el corpus analizado corresponden en primer lugar a la creación de laboratorios remotos y en un segundo lugar su aporte en los procesos de enseñanza, a partir de experiencias en distintas disciplinas. Se demuestra que presentan una serie de ventajas frente a sus homólogos físicos y su aporte en el enriquecimiento del aprendizaje técnico y científico

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ángel Villalobos, Instituto Profesional IACC

Ingeniero Electricista, Magister en Ingeniería de Control y Automatización de Procesos, se ha desempeñado como docente universitario por más de 25 años, es autor de cinco textos y de patentes electrónicas

Rosa Romero Alonso, Instituto Profesional IACC

Doctora en Pedagogía, profesora de Postgrado en distintos programas maestría para profesores desde 2010 en universidades chilenas Ha participado en desarrollo de políticas públicas en TIC.

Citas

M. J. Grant and A. Booth, “A typology of reviews: An analysis of 14 review types and associated methodologies,” Health Info. Libr. J., vol. 26, no. 2, pp. 91–108, Jun. 2009, doi: https://doi.org/10.1111/j.1471-1842.2009.00848.x

A. F. Almarshoud, “The advancement in using remote laboratories in electrical engineering education: a review,” Eur. J. Eng. Educ., vol. 36, no. 5, pp. 425–433, Oct. 2011, doi: https://doi.org/10.1080/03043797.2011.604125

E. Guimarães, E. Cardozo, D. H. Moraes, and P. R. Coelho, “Design and implementation issues for modern remote laboratories,” IEEE Trans. Learn. Technol., vol. 4, no. 2, pp. 149–161, 2011, doi: https://doi.org/10.1109/TLT.2010.22

N. Lima, G. Alves, C. Viegas, and I. Gustavsson, “Combined efforts to develop students experimental competences,” in 3rd Experiment International Conference: Online Experimentation, 2015, pp. 243–248, doi: https://doi.org/10.1109/EXPAT.2015.7463273

I. Grout, “Remote laboratories as a means to widen participation in STEM education,” Educ. Sci., vol. 7, no. 85, pp. 1–18, Dec. 2017, doi: https://doi.org/10.3390/educsci7040085

J. Gómez-Arribas, F. J., Holgado, S., López-de-Vergara, “Integración de experimentos de laboratorio remotos en un entorno ubicuo de aprendizaje,” in I Simposio sobre Computación Ubicua e Inteligencia Ambiental (UCAmI’2005), 2005, pp. 337–344, [Online]. Available: https://www.dit.upm.es/~jlopez/publicaciones/ucami05.pdf

T. Susinos-Rada, C. Rodríguez-Hoyos, A. Calvo-Salvador, and Á. Saiz-Linares, “A Student Voice Research Project in Spain,” Magis, Rev. Int. Investig. en Educ., vol. 11, pp. 39–54, 2019, doi: https://doi.org/10.11144/Javeriana.m11-23.iisv

S. Contreras, J. Carlos Martínez, O. Acevedo, E. Gómez, and C. D. C T, “Tele-operated laboratory of digital techniques laboratorio tele-operado de técnicas digitales,” Rev. Colomb. Tecnol. Av., vol. 2, no. 6, pp. 92–96, 2005, Accessed: Jan. 07, 2022. [Online]. Available: https://www.unipamplona.edu.co/unipamplona/portalIG/home_40/recursos/01_general/revista_6/13102011/15.pdf

R. Rodríguez Zamora and L. A. Espinoza Núñez, “Trabajo colaborativo y estrategias de aprendizaje en entornos virtuales en jóvenes universitarios TT - Collaborative work and learning strategies in virtual environments in university youth TT - Estratégias de trabalho e de aprendizagem colaborativa em ,” RIDE. Rev. Iberoam. para la Investig. y el Desarro. Educ., vol. 7, no. 14, pp. 86–109, 2017, doi: https://doi.org/10.23913/ride.v7i14.274

E. K. Faulconer and A. B. Gruss, “A review to weigh the pros and cons of online, remote, and distance science laboratory experiences,” Int. Rev. Res. Open Distance Learn., vol. 19, no. 2, pp. 155–168, 2018, doi: https://doi.org/10.19173/irrodl.v19i2.3386

M. H. Zhang, C. Y. Su, Y. Li, and Y. Y. Li, “Factors affecting Chinese university students’ intention to continue using virtual and remote labs,” Australas. J. Educ. Technol., vol. 36, no. 2, pp. 169–185, 2020, doi: https://doi.org/10.14742/AJET.5939

A. Moulay Taj, J. Chacon Sombria, A. Gaga, A. Abouhilal, and A. Malaoui, “Conception and Implementation of an IoT System for Remote Practical Works in Open Access University’s Electronic Laboratories,” Int. J. Online Biomed. Eng., vol. 17, no. 02, p. 19, 2021, doi: https://doi.org/10.3991/ijoe.v17i02.19755

K. A. A. Gamage, D. I. Wijesuriya, S. Y. Ekanayake, A. E. W. Rennie, C. G. Lambert, and N. Gunawardhana, “Online delivery of teaching and laboratory practices: Continuity of university programmes during COVID-19 pandemic,” Educ. Sci., vol. 10, no. 10, pp. 1–9, 2020, doi: https://doi.org/10.3390/educsci10100291

H. S. Hassane et al., “Special Session—Online Laboratories in Engineering Education: Innovation, Disruption, and Future Potential,” in IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), 2018, pp. 1228–1232, doi: https://doi.org/10.1109/TALE.2018.8615131

L. Codina, Revisiones bibliográficas sistematizadas Procedimientos generales y Framework para Ciencias Humanas y Sociales. Barcelona: Universitat Pompeu Fabra, 2018.

I. Ferreira González, G. Urrútia, and P. Alonso-Coello, “Systematic Reviews and Meta-Analysis: Scientific Rationale and Interpretation,” Rev. Española Cardiol. (English Ed., vol. 64, no. 8, pp. 688–696, Aug. 2011, doi: https://doi.org/10.1016/j.rec.2011.03.027

M. S. Dos Santos Lopes, L. Pacheco Gomes, R. M. P. Trindade, A. F. Da Silva, and A. C. D. C. Lima, “Web environment for programming and control of a mobile robot in a remote laboratory,” IEEE Trans. Learn. Technol., vol. 10, no. 4, pp. 526–531, Oct. 2017, doi: https://doi.org/10.1109/TLT.2016.2627565

L. Payá, O. Reinoso, A. Gil, and L. M. Jiménez, “Plataforma distribuida para la realización de prácticas de robótica móvil a través de Internet,” Inf. Tecnol., vol. 18, no. 6, pp. 27–38, 2007, doi: https://doi.org/10.4067/s0718-07642007000600005

A. Vijayan, C. Nutakki, D. Kumar, K. Achuthan, B. Nair, and S. Diwakar, “Enabling a freely accessible open source remotely controlled robotic articulator with a neuro-Inspired control algorithm,” Int. J. Online Eng., vol. 13, no. 1, pp. 61–75, 2017, doi: https://doi.org/10.3991/ijoe.v13i01.6288

R. García-Misis, J. M. Cuadra-Troncoso, F. De La Paz López, and J. R. Álvarez-Sánchez, “Development of a Web Platform for On-line Robotics Learning Workshops Using Real Robots,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9108, pp. 232–239, 2015, doi: https://doi.org/10.1007/978-3-319-18833-1_25.

D. Garcia-Costa, A. Suarez, P. A. Martinez, J. Martos, R. Fayos, and E. Lopez-Iñesta, “A transversal virtual remote laboratory for teaching in stem disciplines using robotic platforms,” INTED2020 Proc., vol. 1, pp. 6069–6075, Mar. 2020, doi: https://doi.org/10.21125/INTED.2020.1643

M. Ait Tahar, A. Schadschneider, and J. Stollenwerk, “Technical realisation of a remote-controlled forced mechanic oscillation experiment through the Internet,” Phys. Educ., vol. 54, no. 1, pp. 1–10, 2019, doi: https://doi.org/10.1088/1361-6552/aae9b0

N. Kafadarova, S. Sotirov, and M. Milev, “Remote Access to Wireless Communications Systems Laboratory - New Technology Approach,” US-China Educ. Rev., vol. A, no. 10, pp. 868–874, 2012, Accessed: Mar. 02, 2022. [Online]. Available: https://eric.ed.gov/?id=ED538002

C. Monzo, G. Cobo, J. A. Morán, E. Santamaría, and D. García-Solórzano, “Remote Laboratory for Online Engineering Education: The RLAB-UOC-FPGA Case Study,” Electron., vol. 10, no. 9, May 2021, doi: https://doi.org/10.3390/electronics10091072

H. Guerra, A. Cardoso, V. Sousa, and L. M. Gomes, “Remote Experiments as an Asset for Learning Programming in Python,” Int. J. Online Eng., vol. 12, no. 4, pp. 71–73, 2016, doi: https://doi.org/10.3991/ijoe.v12i04.5278

W. Halimi, C. Salzmann, and D. Gillet, “The Smart Wind Turbine Lab,” in 3rd Experiment International Conference (exp.at’15), 2015, pp. 118–119, doi: https://doi.org/10.1109/EXPAT.2015.7463233

C. Barros, C. P. Leão, F. Soares, G. Minas, and J. Machado, “RePhyS: A multidisciplinary experience in remote physiological systems laboratory,” Int. J. Online Eng., vol. 9, no. 5, pp. 21–24, 2013, doi: https://doi.org/10.3991/ijoe.v9iS5.2756

S. Tumkor, M. Zhang, Z. Zhang, Y. Chang, S. K. Esche, and C. Chassapis, “Integration of a real-time remote experiment into a multi-player game laboratory environment,” in ASME International Mechanical Engineering Congress and Exposition, 2012, vol. 5, pp. 181–190, doi: https://doi.org/10.1115/IMECE2012-86944

R. Ennetta and I. Nasri, “Developing a remote laboratory for heat transfer studies,” Int. J. Interact. Mob. Technol., vol. 9, no. 2, pp. 5–8, 2015, doi: https://doi.org/10.3991/ijim.v9i2.4368

K. W. E. Cheng and C. L. Chan, “Remote hardware controlled experiment virtual laboratory for undergraduate teaching in power electronics,” Educ. Sci., vol. 9, no. 3, pp. 1–13, Sep. 2019, doi: https://doi.org/10.3390/educsci9030222

A. Gampe, A. Melkonyan, M. Pontual, and D. Akopian, “An assessment of remote laboratory experiments in radio communication,” IEEE Trans. Educ., vol. 57, no. 1, pp. 12–19, 2014, doi: https://doi.org/10.1109/TE.2013.2262685

D. J. Erasmus, S. E. Brewer, and B. Cinel, “Assessing the engagement, learning, and overall experience of students operating an atomic absorption spectrophotometer with remote access technology,” Biochem. Mol. Biol. Educ., vol. 43, no. 1, pp. 6–12, Jan. 2015, doi: https://doi.org/10.1002/bmb.20838

K. Bauer and L. Mendes, “WebLab of a DC motor speed control didactical experiment,” Campus-Wide Inf. Syst., vol. 29, no. 4, pp. 281–290, Aug. 2012, doi: https://doi.org/10.1108/10650741211253877

P. J. Axaopoulos, K. N. Moutsopoulos, and M. P. Theodoridis, “Engineering education using a remote laboratory through the Internet,” Eur. J. Eng. Educ., vol. 37, no. 1, pp. 39–48, Mar. 2012, doi: https://doi.org/10.1080/03043797.2011.644764

W. C. Karunianto and A. H. Saputro, “Design and Implementation Remote Laboratory based on Internet of Things Study Case in Diffraction Grating Experiment,” in International Conference on Computer, Control, Informatics and its Applications, 2017, pp. 143–146, Accessed: Mar. 02, 2022. [Online]. Available: https://inspirehep.net/literature/1651020

L. Gonthier, M. Billaud, D. Lacoste, and T. Zimmer, “Remote photovoltaic outdoor solar lab,” 2017 27th EAEEIE Annu. Conf. EAEEIE 2017, pp. 1–5, 2017, doi: https://doi.org/10.1109/EAEEIE.2017.8768678

A. Parkhomenko, O. Gladkova, S. Kurson, A. Sokolyanskii, and E. Ivanov, “Internet-Based Technologies for Design of Embedded Systems,” J. Control Sci. Eng. 2, pp. 55–63, Apr. 2015, doi: https://doi.org/10.17265/2328-2231/2015.02.001

R. Venant, P. Vidal, and J. Broisin, “Evaluation of Learner Performance during Practical Activities: An Experimentation in Computer Education,” in Proceedings - IEEE 16th International Conference on Advanced Learning Technologies, Nov. 2016, pp. 237–241, doi: https://doi.org/10.1109/ICALT.2016.60

M. I. Mazuritskiy, S. A. Safontsev, B. G. Konoplev, and A. M. Boldyreva, “Remote Access to Scientific Laboratory Equipment and Competency-Based Approach to Science and Technology Education,” https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-7363-2.ch069, vol. 3–3, pp. 1302–1316, Jan. 1AD, doi: https://doi.org/10.4018/978-1-4666-7363-2.CH069

D. Ramírez, M. S. Ramírez, and T. R. Marreno, “Novel use of a remote laboratory for active learning in class,” Chem. Eng. Educ., vol. 50, no. 2, pp. 141–148, 2016, Accessed: Mar. 02, 2022. [Online]. Available: https://repositorio.tec.mx/handle/11285/615968

C. Terkowsky, S. Frye, and D. May, “Online engineering education for manufacturing technology: Is a remote experiment a suitable tool to teach competences for ‘Working 4.0’?,” Eur. J. Educ., vol. 54, no. 4, pp. 577–590, Dec. 2019, doi: https://doi.org/10.1111/ejed.12368

V. B. Thati et al., “Best practices for organization and quality assessment of an e-learning training in the higher education system,” Edulearn19: 11th International Conference on Education and New Learning Technologies. IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT, pp. 1498–1508, 2019.

C. Felgueiras et al., “A sustainable approach to laboratory experimentation,” in ACM International Conference Proceeding Series, Oct. 2019, pp. 508–514, doi: https://doi.org/10.1145/3362789.3362952

B. Bordel, R. Alcarria, and T. Robles, “Industry 4.0 Paradigm on Teaching and Learning Engineering*,” Int. J. Eng. Educ., vol. 35, no. 4, pp. 1018–1036, 2019, Accessed: Mar. 07, 2022. [Online]. Available: http://search.freefind.com/find.html?si=97133703&pid=r&n=0&_charset_=UTF-8&bcd=÷&query=Industry+4.0+Paradigm+on+Teaching+and+Learning+Engineering*

S. Saxena and S. P. Satsangee, “Offering Remotely Triggered, Real-Time Experiments inElectrochemistry for Distance Learners,” J. Chem. Educ., vol. 91, no. 3, pp. 368–373, Mar. 2014, doi: https://doi.org/10.1021/ed300349t

T. Wu and P. R. Albion, “Investigating remote access laboratories for increasing pre-service teachers’ STEM capabilities,” Educ. Technol. Soc., vol. 22, no. 1, pp. 82–93, 2019, [Online]. Available: https://www.researchgate.net/publication/332540288

T. Budai and M. Kuczmann, “Towards a Modern, Integrated Virtual Laboratory System,” Acta Polytech. Hungarica, vol. 15, no. 3, pp. 191–204, 2018, doi: https://doi.org/10.12700/APH.15.3.2018.3.11

A. Chevalier, C. Copot, C. Ionescu, and R. De Keyser, “A three-year feedback study of a remote laboratory used in control engineering studies,” IEEE Trans. Educ., vol. 60, no. 2, pp. 127–133, May 2017, doi: https://doi.org/10.1109/TE.2016.2605080

D. May, C. Terkowsky, T. R. Ortelt, and A. E. Tekkaya, “The Evaluation of Remote Laboratories Development and application of a holistic model for the evaluation of online remote laboratories in manufacturing technology education,” in 13th International Conference on Remote Engineering and Virtual Instrumentation (REV), 2016, pp. 133–142, doi: https://doi.org/10.1109/REV.2016.7444487

L. C. M. Schlichting, S. G. De Ferreira, D. D. De Bona, F. De Faveri, J. A. Anderson, and G. R. Alves, “Remote laboratory: Application and usability,” Proc. 2016 Technol. Appl. to Electron. Teaching, TAEE 2016, Aug. 2016, doi: https://doi.org/10.1109/TAEE.2016.7528355

G. S. Ferreira, J. Lacerda, L. C. Schlichting, and G. R. Alves, “Enriched scenarios for teaching and learning electronics,” Sep. 2014, doi: https://doi.org/10.1109/TAEE.2014.6900132

E. Al-Masri, “Lab-as-a-Service (LaaS): A Middleware Approach for Internet-Accessible Laboratories,” 2018, doi: https://doi.org/10.1109/FIE.2018.8658702

L. Favario and E. Masala, “Work-in-progress: Integrating a remote laboratory system in an online learning environment,” IEEE Glob. Eng. Educ. Conf. EDUCON, vol. 10-13-Apri, no. April, pp. 988–991, 2016, doi: https://doi.org/10.1109/EDUCON.2016.7474672

M. A. Marques et al., “How remote labs impact on course outcomes: Various practices using VISIR,” IEEE Trans. Educ., vol. 57, no. 3, pp. 151–159, 2014, doi: https://doi.org/10.1109/TE.2013.2284156

M. Tawfik et al., “Grid Remote Laboratory Management System Sahara Reaches Europe,” 2013, doi: https://doi.org/10.1109/REV.2013.6502889

A. Mikroyannidis et al., “FORGE: An eLearning Framework for Remote Laboratory Experimentation on FIRE Testbed Infrastructure,” HAL Sci. Ouvert., vol. 1, pp. 521–559, 2017, Accessed: Mar. 07, 2022. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01656701

A. V. Basantes, M. E. Naranjo, M. C. Gallegos, and N. M. Benítez, “Los dispositivos móviles en el proceso de aprendizaje de la facultad de educación ciencia y tecnología de la universidad técnica del norte de Ecuador,” Form. Univ., vol. 10, no. 2, pp. 79–88, 2017, doi: https://doi.org/10.4067/S0718-50062017000200009

L. A. Zualkernan, G. A. Husseini, K. F. Loughlin, J. G. Mohebzada, and M. El Gaml, “Remote labs and game-based learning for process control,” Chem. Eng. Educ., vol. 47, no. 3, pp. 179–188, 2013, Accessed: Mar. 02, 2022. [Online]. Available: https://eric.ed.gov/?id=EJ1037354

F. Y. Limpraptono and E. Nurcahyo, “The Development of Electronics Telecommunication Remote Laboratory Architecture Based on Mobile Devices,” Int. J. online Biomed. Eng., vol. 17, no. 3, pp. 26–36, 2021, doi: https://doi.org/10.3991/ijoe.v17i03.20179

J. Khalfallah and J. Ben Hadj Slama, “Facial Expression Recognition for Intelligent Tutoring Systems in Remote Laboratories Platform,” in Procedia Computer Science, 2015, vol. 73, pp. 274–281, doi: https://doi.org/10.1016/j.procs.2015.12.030

T. Karakasidis, “Virtual and remote labs in higher education distance learning of physical and engineering sciences,” IEEE Glob. Eng. Educ. Conf. , pp. 798–807, 2013.

Descargas

Publicado

2023-09-13

Cómo citar

[1]
Ángel Villalobos Molero y R. Romero Alonso, «Laboratorios remotos en educación superior: Una revisión bibliográfica sistematizada», TEyET, n.º 35, p. e7, sep. 2023.