Análisis de la incertidumbre en la medición del nivel cognitivo usando Lógica Difusa
DOI:
https://doi.org/10.24215/18509959.33.e5Palabras clave:
Incertidumbre, Nivel cognitivo, Lógica difusaResumen
El objetivo del presente artículo es formular un enfoque del tratamiento de la incertidumbre en la medición del estado cognitivo. Esta incertidumbre se origina en la apreciación subjetiva del evaluador de las acciones del estudiante, sujeta a su experiencia y sensibilidad. Por tal motivo, se utiliza la Lógica Difusa como base de un diseño del modelo del diagnóstico. En el modelo propuesto se identificaron elementos que agregan información relevante a la evaluación si se la compara con la realizada con los métodos tradicionales. Dichos elementos son: •Variables lingüísticas que agregan información sobre el esfuerzo individual en el aprendizaje a lo largo de un período académico, arrojando información sobre su nivel final de desempeño. Se obtiene un perfil individual. •Niveles cognitivos basados en la taxonomía revisada de Bloom. A partir de ellos se obtienen perfiles grupales. Asimismo, se ha medido la incertidumbre total de cada grupo de estudiantes. Se presenta un ejemplo del modelo donde se comparan los valores observados contra los inferidos por el sistema. Asimismo, se presentan valores sobre la performance del modelo
Descargas
Citas
S. Ohlsson, P. Langley, “Psychological evaluation of path hypotheses in cognitive diagnosis,” in Learning issues for intelligent tutoring systems, H. Mandl y A. Lesgold Ed. New York: Springer Verlag,1988, pp. 42-62.
R. Mazza, C. Milani, “Exploring usage analysis in learning systems: Gaining insights from visualizations,” in the Workshop on Usage Analysis in Learning Systems at the 12th International Conference on Artificial Intelligence in Education, New York, 2005, pp. 1-6.
F. Dowlatshahi, L. J. Kohout, “Intentional possibilistic approach to dealing with incompleteness, vagueness and uncertainty,” Fuzzy sets and Systems, vol. 25, pp. 277-295, 1988
P. Smets, “Imperfect Information: Imprecision and Uncertainty,” in Uncertainty Management in Information Systems, Motro y Smets, Ed. Springer, 1997, pp. 225-254.
B. Russell. “Vagueness,” The Australasian Journal of Psychology and Philosophy, vol. 1, no. 2, pp. 84-92, 1923.
L. Godo H. Prade D. Dubois, F. Esteva., “An information-based discussion of vagueness: six scenarios leading to vagueness” in Handbook of Categorization in Cognitive Science, Ed. Elsevier, Amsterdam, 2005, Chapter 40
C. Huapaya, F. Lizarralde, G. Arona, J. Vivas. “Análisis del aprendizaje usando el nivel de incertidumbre en la adquisición de conocimiento”, in Proceedings of the WICC 2013, Entre Ríos, 2013, pp. 1126-1130.
J. P. Leighton, M.J. Gierl, “Why cognitive diagnostic assessment?,” in Cognitive diagnostic assessment for education: Theory and applications Rds., J. P. Leighton, M. J. Gierl, Ed. Cambridge University, 2007, pp. 3–18.
M. J. Zieky, “An introduction to the use of evidence-centered design in test development,” Psicología educativa, vol. 20, pp. 79-87, 2014
L.A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-353, 1965.
L. A. Zadeh, “Fuzzy logic, neural networks and soft computing,” Communication of the ACM, vol. 37, pp. 77-84, 1993
S. Ibrahim, K. Seong-in, “A fuzzy system for evaluating students’ learning achievement,” Expert Systems with Applications, vol. 36, pp. 6236–6243, 2009
B. Alibek, S. Sharipbay, U. Ulyukova, S. Talgat, K. Batyrkhan, “Student’s performance evaluation by fuzzy logic,” Procedia Computer Science, vol. 102, pp. 98-105, 2016
K. Chrysafiadi, M. Virvou, “Evaluating the integration of fuzzy logic into the student model of a web-based learning environment,” Expert System with Aplications, vol. 39, pp. 13127-13134, 2012
P. Petts, G. Swift, S. Nightingale, “Evaluation of Student Understanding of Uncertainty in Level 1 Undergraduate Physics Laboratories” in Proceedings of the 10th International Conference New Perspectives in Science Education, Florence,, 2021, pp. 413-419.
G. Gokmena, T. Akincib, M. Tektaúc, N. Onatc, G. Kocyigita, N. Tektaú, “Evaluation of student performance in laboratory applications using fuzzy logic,” Procedia Social and Behavioral Sciences, vol. 2, pp. 902–909, 2010
K. VanLehn, “Student modelling,” in Foundations of Intelligent Tutoring Systems, M. Polson Ed., Hillsdale. N.J Lawrence Erlbaum Associates, 1988, pp. 55-78.
P. Langley, J. Wogulis, S. Ohlsson, “Rules and principles in cognitive diagnosis,” in Diagnostic Monitoring of Skill and Knowledge Acquisition, N. Frederiksen, R. Glaser, A. Lesgold and M. G. Shafto, Ed. Hillsdale, NJ: Lawrence Erlbaum Associates, 1990, pp. 217–250.
P. D. Nichols, S. F. Chipman, R. L. Brennan, Cognitively Diagnostic Assessment. New York: Routledge, 1995.
B. K. Hofer, L. D. Bendixen. “Personal epistemology: Theory, research, and future directions,” in APA educational psychology handbook, Vol. 1. Theories, constructs, and critical issues, K. R. Harris, S. Graham, T. Urdan, C. B. McCormick, G. M. Sinatra, J. Sweller Ed. American Psychological Association. 2012, pp. 227–256.
A. S. Eryasar, A. Kilinc, “The Coherence Between Epistemologies and SSI Teaching”, Science and Education, vol. 31, no. 1, pp. 123–147, 2022
A. Rieu, T. Leuders, K. Loibl, “Teachers’ diagnostic judgments on tasks as information processing–The role of pedagogical content knowledge for task diagnosis,” Teaching and Teacher Education. vol. 111, 103621, 2022.
E. Rich, “Users are individuals:- individualizing user models,” Int. J. Man-Machine Studies, vol. 18, pp. 199–214, 1983
E. Wenger, Artificial Intelligence and Tutoring Systems: Computational and Cognitive Approaches to the Communication of Knowledge, Morgan Kaufmann, 1998.
C. Law, “Using fuzzy numbers in educational grading systems,” Fuzzy sets and systems, vol. 83, no. 3 pp. 311–323, 1996
C. Sun, D. Chang, “Fuzzy assessment of learning performance of junior high school students” in Proceedings of the First National Symposium on Fuzzy Theory and Applications, Hsinchu, Taiwan, 1993, pp. 1-10.
L. D. Anderson, B. Krathwohl, A Taxonomy for Learning, Teaching and Assessing: a Revision of Bloom’s Taxonomy of Educational Objectives, New York Longman, 2001.
M. Voskoglou, “Transition across levels in the process of learning: a fuzzy model”, Journal of Mathematical Modeling and Application, vol 1 no. 1 pp. 37–44, 2009.
S. Guillaume, B. Charnomordic, “Fuzzy inference systems: an integrated modelling environment for collaboration between expert knowledge and data using Fispro,” Expert Systems with Applications, vol. 39, no. 10, pp. 8744-8755, 2012
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Constanza Raquel Huapaya, Francisco Angel Jose Lizarralde, Marcela Gonzalez, Delia Esther Benchoff
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor y licencias
Los artículos aceptados para publicación tendrán la licencia de Creative Commons BY-NC. Los autores deben firmar un acuerdo de distribución no exclusiva después de la aceptación del artículo.